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BOUNDARY-LAYER CHANGES ACROSS AN INCIDENT €EFLECTING SHOCK 

By S. Z. Pinckney 

NASA Langley Research Center 
Langley Station, Hampton, V a .  

ABSTRACT 

A method i s  presented f o r  calculating the  changes i n  thickness and velocity 
p ro f i l e  imposed on a turbulent boundary layer  by the  action of an incident 
re f lec t ing  oblique shock. 
investigations on boundary-layer-shock intersections:  

Two general methods have been u t i l i z e d  i n  previous 

(1) Momentum in t eg ra l  methods 

(2)  Assumptions of shock models and average boundary-layer parameters 

The present method can be l i s t e d  under method 2. 
a hypothetical one-dimensional boundary layer  which s a t i s f i e s  t he  t o t a l  momentum, 
mass flow, and energy of the  actual  boundary layer (having variable propert ies)  
upstream of the  shock. 
layer  a r e  expressed i n  re la t ion  t,o t h e  corresponding pressures i n  the  f r e e  stream 
outside of t he  boundary layer.  
r i s e  i n  the  ac tua l  boundary layer  is  matched with that of the  f r e e  stream. 
use of empirical relationships arrived at from a study of experimental boundary- 
layer  data, it has been found possible t o  calculate with reasonable accuracy the  
mass contribution from t h e  main stream t o  the  boundary layer  as it passes through 
the  shock. 

The flow model used i s  tha t  of 

Pressures i n  the  hypothetical one-dimensional boundary 

Through these expressions the s ta t ic-pressure 
By 

The changes i n  thickness and velocity-profile index of turbulent boundary 
layers,  as calculated by t h i s  method, a re  compared with experimental behavior 
from da ta  of other  investigators.  I n  general t he  agreement between calculated 
and experimental resul ts ,  a t  Mach numbers as high as  4.0 and shock turning angles 
t o  l3O, i s  subs tan t ia l ly  be t t e r  than t h a t  obtainable with previously published 
methods. 
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BY S. Z. Pin&ney* 
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INTROlXJCTION 

A number of analyt ical  and experimental investigations have been conducted 

The ana ly t ica l  treatments f o r m t h e  most par t  use one o r  t he  other  of two 
on the  behavior of boundary layers  interact ing with incident re f lec t ing  shock 
waves. ' basic l i n e s  of approach. 

The first approach i s  t h a t  employing the  momentum in t eg ra l  equation. R i t t e r  
and Kuo (ref. 1) used t h i s  method. The nature of t h e i r  assumptions w a s  such 2s 
t o  l i m i t  the  appl icabi l i ty  of their  analysis t o  low values of Mach number and 
very weak shocks (on the  order of 1' t o  2 O ) .  Reshotko and Tucker (ref.  2) u t i -  
l i zed  t h e  same approach as R i t t e r  and Kuo but t h e i r  method w a s  more refined. 
Fa i r  agreement with data  is  obtained using Reshotko and Tucker's method t o  cal-  
culate the  changes i n  shape parameter and boundary-layer thickness across weak 
shock waves (on t h e  order of 20 t o  4O) .  However, the qual i ty  of t he  prediction 
deter iorates  a s  t he  strength of t h e  incident shock increases. The second method 
employs a hypothetical one-dimensional boundary layer  having transversely con- 
s tan t  propert ies  t h a t  a r e  derived from the  transversely variable properties of 
t he  ac tua l  boundary layer. 
layer  a r e  then deduced from t h e  changes imposed on t h i s  hypothetical boundary 
layer  i n  consequence of t h e  actions occurring i n  a postulated boundary-layer- 
shock model. This approach was  used by Hammit t  i n  reference 3 .  H a m m i t t ' s  
analysis gives good r e su l t s  f o r  t he  velocity-profile change but, as shown i n  
f igure 1, diverges from data f o r  thickness change as  the  strength of the  incident 
shock increases. 
of Reshotko and Tucker f o r  one of t h e  data  points of reference 4. 

1 

The overal l  changes occurring i n  the  ac tua l  boundary 

Figure 1 also gives a spot value calculated using the  method 

The present analysis, although s imilar  i n  approach t o  that of H a m m i t t ,  
employs a model f o r  the  mechanics of t he  hypothetical boundary-layer flow which 
permits evaluation of t he  mass contribution t o  t he  boundary layer  from the exter- 
nal stream. 
successful estimation of the  boundary-layer-thickness change. 

Incorporation of t h i s  provision is regarded as e s sen t i a l  t o  the 

SYMBOLS 

CM Mach number function used i n  the  f i t t i n g  of Z2 data  

H t o t a l  pressure 
*Aerospace Engineer. 
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distances ident i f ied  i n  f igures  4 and 5 

m a s s  flow per u n i t  area ra t io ,  

Mach number 

velocity-profile index from (g) =($” 
s t a t i c  pressure 

theore t ica l  free-stream r i s e  i n  s t a t i c  pressure across both incident 
and ref lected shocks 

t ipanic  pressure, Z& 
2 

Reynolds number based on 6 

s t a t i c  temperature 

t o t a l  temperature 

veloci ty  

perpendicular distance from the  w a l l  

m a s s  flow i n  the  boundary layer  

r a t i o  t o  61 of the  distances from the  w a l l  t o  t he  in te rsec t ion  of 
t he  w a l l  shock and incident shock 

r a t i o  t o  of t he  distance from t h e  inviscid in te rsec t ion  of t he  
incident shock with the  w a l l  t o  t h e  most upstream point at  which the 
pressure r i s e  i s  detectable 

turning angle through s ingle  shock wave 

angle of ex t ra  turning of t h e  w a l l  shock 

boundary-layer-shock turning angle 

shock angle 

r a t i o  of spec i f ic  heats, cp/cv 

boundary-layer thickness 



P 

6* - 
0 

e - 
6 

boundary-layer thickness as indicated i n  figures 4 and 5 

mass density, p/gRT 

r a t i o  of displacement thickness i5* t o  boundary-layer thickness 6, 

(6*/6 1 
( e m  shape parameter, 

r a t i o  of momentum thickness' 8 t o  boundary-layer thickness 6, 

momentum per un i t  area rat io ,  

energy per un i t  area rat io ,  

~ Subscripts: 

boundary layer  

at t h e  point of maximum pressure r i s e  downstream of the  shock I d  
e e f fec t ive  o r  average 

2 

1 

free stream o r  conditions at  the edge of the  boundary layer  

conditions upstream of the  shock 

' 0  stagnation conditions 

~ 

I prime values are at  s t a t ion  6; 

I ANAWCSIS 

A one-dimensional hypothetical boundary layer  t h a t  has the  same boundary.. 
layer thickness, mass f l o w ,  integrated t o t a l  momentum, and integrated t o t a l  
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enthalpy as t h a t  of the  ac tua l  boundary layer  i s  assumed. 
one-dimensional boundary layer i s  used, along with a boundary-layer-shock 
model and empirical data, t o  determine the  changes (from a point upstream 
of the  incident ref lect ing shock t o  the  point of maximum pressure rise down- 
stream of t he  shocks) i n  the  velocity-profile index and i n  the  boundary- 
layer  thickness. The following assumptions were made: 

This hypothetical 

(1) The flow i s  adiabatic.  

(2 )  The f r i c t i o n  e f f ec t s  through the  region of calculation are negligible.  

( 3 )  Upstream of the  shocks and at  the  point of maximum pressure rise down- 
stream of t he  shocks, the  s t a t i c  pressure of the  actual  boundary layer  i s  con- 
s t a n t  across the boundary layer  and equal t o  the  corresponding theore t ica l  free- 
stream s t a t i c  pressure. 

( 4 )  The velocity p ro f i l e s  s a t i s f y  the  r e l a t ion  

the  velocity-profile index. 

( 5 )  The static-temperature p ro f i l e s  are of t h e  

r 
- 1 + 0.896 - 

2 - M22i. - - -  
t 2  

vb = (s)"", where N i s  
v2 

form 

which i s  the form given i n  reference 5 f o r  adiabatic turbulent flow. 

(6)  The boundary-layer-shock model assumed i s  of a type consistent with the 
boundary-layer development and shock configurations revealed by shadowgraph and 
schlieren observations of t he  ac tua l  phenomena as given i n  references 4, 6, 7, 
and 8. 

(7) The expression f o r  the  integrated t o t a l  enthalpy of t he  one-dimensional 
hypothetical boundary layer  i s  as follows: 

The necessary equations f o r  determining t h e  values of t he  equivalent boundary- 
layer  parameters with the exception of t h e  integrated t o t a l  enthalpy a re  sum- 
marized in  reference 9. 

Profile-Index Change 

Two parameters, the  free-stream Mach number M2 and e i t h e r  t he  boundary- 
layer-profile index N 
l ayer  f l o w  a re  needed t o  describe completelythe boundary layer  except f o r  t h e  

4 

o r  any one of t h e  parameters of the  equivalent boundary- 



absolute thickness 6. Inasmuch as M Z , l  and N1 are  known, the  boundary 
layer  upstream of the  shock i s  completely described. 
edge of t he  boundary layer  downstream of t h e  shocks i s  eas i ly  determined. 
To describe completely the  boundary layer  at  the  downstream stat ion,  it suff ices  
t o  obtain any s ingle  equivalent flow parameter downstream of the  shocks. 

*e d pressure r a t i o  2 w a s  chosen as the  parameter t o  be determined. The correct 
%, d 

pe, d value of - must s a t i s f y  both the  profile-index relat ionship with %he f r e e  
'1, d 

stream downstream of the  incident and ref lect ing shocks and the  boundary-layer 
effect ive s ta t ic-pressure r i s e  through the  boundary-layer shocks. 

The Mach number at the  
M2,d 

The 

Determination of 2 pe d values corresponding t o  the  profile-index relat ion-  
'Z,d 

ship.- "he one-dimensional hypothetical boundary-layer Mach number &,l upstream 
of the  shock can be obtained by combining the  continuity, t o t a l  momentum, and 
energy equations t o  obtain the  e f fec t ive  Mach number function, 

Equation (1) is derived d i r ec t ly  from equation ( 5 )  of reference 9 with the  
exception t h a t  an expression f o r  e f fec t ive  t o t a l  temperature based on the  energy 
equation has been subst i tuted f o r  stagnation temperature, which was assumed con- 
s t an t  across t h e  boundary layer  i n  reference 9. I n  evaluating equation (1) it 
w i l l  be found convenient t o  use p l o t s  of (%), (g), and (t) presented i n  

f igures  2(a), (b),  and ( c )  as functions of the velocity-profile index and the  
free-stream Mach number Mz.  

Combining t h e  continuity, momentum, and energy relat ionships  of t he  equiv- 
a len t  boundary-layer flow and of the  ac tua l  boundary-layer flow and assuming that 
the  average energy per un i t  mass i s  the  same a t  s ta t ions  1 and d, t he  following 
equation i s  obtained f o r  t h e  boundary layer  a t  t he  downstream s ta t ion :  
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For the  profile-index-change calculation a simplified boundary-layer-shock model 
i s  assumed ( f i g .  3 ) ,  which gives the  same re su l t s  as can be obtained f o r  t h e  more 
complicated models. 
boundary-layer flow at M e , l  (Obtained from eq. (1)) i s  subjected t o  a range of 
turning angles ab t o  obtain a range of Q,d values. These &,d values are 
substi tuted i n  equation (2 )  t o  obtain a family of equations of the  form 

By use of the  shock model of f igure 3,  the  equivalent 

where fo r  a given value of ab, a, b, and c are constants. The solut ion of 
equation ( 3 )  f o r  each selected value of 
prof i le  index Nd and of the free-stream Mach number M2,d. The Mach number 

MZ ,d Thus, the  solution of 
each equation ( 3 )  fo r  Nd can be obtained by using f igures  2(a) and (b). With 
the values of M2,d and Nd known, the corresponding ~ ~ , d / p Z , ~  values can be 

evaluated from the  equation 

ab i s  a function of t he  velocity- 

i s  determined from the  external  stream conditions. 

’e d - =  
*Z,d (q) d 

(4 )  

The values of ( m / m 2 ) d  are determined f o r  t h e  N d  value obtained by s o ~ u t i o n s  

of equation ( 3 ) .  H a v i n g  obtained solutions f o r  Nd and pe, d/pz,d as a func- 

t i o n  Of ab 

and the  actual boundary-layer flow at s t a t i o n  d, t he  next s t ep  i s  t o  obtain a 
second set  of solutions f o r  

t i v e  boundary-layer- shock system. 

through t h e  conservation equations relating t h e  equivalent flow 

through values obtained from the effec- ’e , d/p 2 ,  d 

values corresponding t o  the  e f fec t ive  s t a t i c -  e,d/PZ,d 
Determination of p 

pressure r a t i o  through the boundary-layer shocks.- Corresponding t o  t h e  range of 



t o  a range 
e,l  

%,d values obtained i n  the  previous section by subjecting M 

of turning angles by using the shock model of f igure  3,  a range of e f fec t ive  
static-pressure r a t io s  pe,d e,l i s  obtained. 

i s  then used t o  obtain 

equation : 

as a function 
I" 

e, d/* 1,  d p 

- I- 

L - 

This rawe Of 

of  no from the following 

is  the  theore t ica l  static-pressure r a t i o  across 1, d/'Z, 1 The pressure r a t i o  p 

both incident and ref lected-  shocks i n  the  f r ee  stream. 

Superposition of t he  two s e t s  of values e, d/' 2 ,  d - Graphical solution f o r  p 

as functions of % obtained as described i n  the  preceding see- 
Of p,, d/pl, d 
t i ons  yields  a graphical solution f o r  t he  unique value of 

s a t i s f i e s  simultaneously the  requirements of t he  boundary layer  and of the  exter- 
nal stream and thereby determines the  correct value of t he  boundary-layer-shock 
turning angle ab' The value of f?d i s  then kmmediately determinate from the  
value of %. 

which e, d/'Z, d p 

Boundary-Layer-Thickness Change 

The boundary-layer-thickness change across the  shock system i s  calculated 
from the  equations of continuity applied i n  a direct ion p a r a l l e l  t o  the  w a l l .  
It i s  e s sen t i a l  t h a t  provision be made f o r  the e f f ec t s  of mass t ransferred from 
the  external  stream t o  the  boundary layer  i n  passing through the  shock system 
and the  following mixing region up t o  the  point of maximum pressure r i s e .  The 
very simple boundary-layer-shock model successfully used i n  the  previous section 
t o  calculate  t h e  profile-index change permits no mass-flow addition t o  t he  
boundary layer  and is  unsuitable f o r  thickness-change calculations.  
necessary therefore  t o  introduce a somewhat more elaborate model which recognizes 
the  e f f ec t s  of mass addition. 

It becomes 

The models selected, i l l u s t r a t e d  i n  figures 4 and 5, incorporate a shock 
or iginat ing at t h e  w a l l  representative of the e f f ec t  of the  thickening which 
occurs i n  the  inner  pa r t  of the  actual boundary layer  under the  influence of an 
sdverse pressure gradient. A procedure has been evolved f o r  arr iving at  the  
s t rength and point of or ig in  of t h i s  w a l l  shock such t h a t  t he  mass flow i n  t h e  
boundary layer  c m  he ded~ceC? f r c m  t h e  distmze f r c m  t hz  xd,1 of the b~iiiidary- 
l aye r  outer  streamline. 
w a l l  shock creates  a void region i n  the flow model contiguous t o  the  w a l l . .  
fu r the r  elaboration of t he  flow model incorporates features  suggested by study 

The turning of the equivalent boundary layer  by t h i s  
Some 
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of schlieren pictures of the terminal development of t he  boundary-layer flow t o  
t h e  point of m a x i m u m  pressure rise. 

Mass addition t o  t h e  boundary layer  through the  shocks.- The point of or igin 
( f i g .  4 or 3) of the  w a l l  shock i s  determined by knowing the  shock turning angle 
and t h e  distance from the  wall(ZISl) t o  the  point of intersect ion with the inci-  
dent shock. The value of Z1 ( r a t i o  t o  6 1  of the  distance from the  w a l l  t o  t he  
intersect ion o f  t he  w a l l  shock and incident shock) i s  obtained from functional 
relationships empirical i n  origin.  With the point of or ig in  of the  w a l l  shock 
and the  t u r n i n g  angle known, the  fore  par t  of t he  void region can be described. 
After t h e  incident shock in te rsec ts  with the  w a l l  shock it passes on t o  inter-  
sect  with the  void region. The w a l l  shock passes from the  point of or igin out 
u n t i l  it intersects  the  boundary-layer edge. The height of t he  void region i s  
then calculated at the longitudinal location of the intersect ion of t he  incident 
shock with the  void region o r  at the  longitudinal location of the intersect ion 
of the w a l l  shock w i t h  the  boundary-layer edge, whichever point i s  farther down- 
stream. 
Study of the boundary-layer mass flows i n  comparison w i t h  values calculated from 
the  preceding flow model, with various assumptions being used f o r  t he  strength 
of the w a l l  shock, revealed an interest ing proportionali ty.  A t  turning angles 
of ab 
w a l l  shock, t h e  boundary-layer flow calculated f o r  a thickness (a t  values 
of corresponding t o  the state of t he  equivalent boundary layer  a t  t h i s  

s t a t ion )  generally w a s  about 8 t o  12  percent l e s s  than the  measured boundary- 
layer  mass f l o w  at t he  point of m a x i m u m  pressure rise. Thus, t he  height of t he  
void region at the s ta t ion  designated by thickness w a s  nearly a measure of 
t he  exact mass addition t o  t h e  boundary layer.  

c 

The boundary-layer thickness a t  th i s  posit ion i s  referred t o  as 8;. 

within the equivalent boundary layer, f o r  both the  incident shock and the  
S i  

peVe 

Si 

The postulated strength of t h e  w a l l  shock w a s  increased s l igh t ly  by stipu- 
l a t ing  a turning angle greater  than the angle ab by a s m a l l  angle u;. This 
change served t o  es tabl ish equality between t h e  measured boundary-layer-flow 
addition and that calculated, as indicated, from t h e  height of the  void region. 
The requis i te  values of a{ 
presented i n  f igure 6 plot ted against t he  free-stream turning angle of t he  inci-  
dent shock. Within the  range of t h e  da ta  investigated, no systematic trend w i t h  
Reynolds number, Mach number, o r  incident shock s t rength w a s  evident. The assump- 
t ion,  i n  the  l i g h t  of t h i s  result, t h a t  can be given a f ixed value of 2O, 

fo r  t h e  range of conditions eq lo red ,  forms t h e  basis of the  method given here 
f o r  calculating the  mass addition t o  t h e  boundary layer and, from t h i s  result, 
t he  change i n  thickness. 
calculation. 

were determined f o r  t h e  available data  and are 

ab 

It remains now t o  out l ine t h e  process of making the  

Outline of calculations.- The calculated mass-flow r a t i o  across the shocks 
i s  given by 

a 



The equivalent flow parameters $,d and p '  a r e  obtained by subjecting the  
equivalent flow at s t a t ion  1 t o  a t o t a l  turning of (2% + 2'). 
culate  6;/b1 the  value of Z1 i s  needed, as is  the  turning angle and the  shock 
angle of each of the  shock waves of t he  boundary-layer-shock models ( f ig s .  4 
and 59. 
t r a t e d  i n  f igure 7. 
of shock turning angle, Mach number, and Reynolds number. Details of the corre- 
l a t i o n  a re  given i n  the  appendix. The various shock angles and lengths required 
t o  determine the  mass-flow addition through evaluation of 6d/Sl can be computed 
using conventional two-dimensional, oblique shock charac te r i s t ic  methods. The 
necessary equations a re  summarized i n  the  appendix. 

e,d 
In  order t o  cal- 

An empirical correlat ion has been established f o r  Zl, which i s  i l l u s -  
The value of Z1 f o r  a given se t  of conditions i s  a function 

The continuity equation wri t ten between s ta t ions  1 and d with the inclusion 
of t he  calculated mass-flow r a t i o  across the shocks gives f o r  the  overal l  
boundary-layer-thickness r a t i o  6 

where w;/wl i s  calculated by assuming the  wall-shock turning t o  be (ab + 2 O ) .  

RESULTS AND DISCUSSION 

Prof ile-Index Change 

The method given f o r  calculating a change i n  p ro f i l e  index N w a s  derived 
with the  assumption t h a t  t he  boundary-layer-velocity d is t r ibu t ion  w a s  t r u l y  
exponential. A value of N, f o r  purposes of analysis, may be associated w i t h  an 
ac tua l  boundary-layer-velocity prof i le ,  not t r u l y  exponential. This purpose i s  
accomplished by s t ipu la t ing  tha t  the value of 
p r o f i l e  corresponds t o  a t r u l y  exponential p rof i le  having a value of 

i den t i ca l  with t h a t  of the  actual  boundary layer.  
obtained by using the  exponential assumption i s  evidenced by f igure 8, which 
shows data  points  and curves calculated by the procedure outlined i n  a previous 
section. The grea tes t  deviation found i n  the cases analyzed was of t he  order 
of 10 percent. 

N t o  be assumed f o r  t he  ac tua l  
cp cp ( I 2 )  

The qual i ty  of the  r e su l t s  

9 



Boundary-Layer-Thickness Change 

Curves of 6d/61 as a function of aZ, calculated by methods outlined 

herein, are shown i n  figure 9 at values corresponding t o  the  data of references 4, 
6, and 7. Only data  from experiments f o r  which the  shock generator completely 
spanned the tunnel have been used. 
6d/61 for  aZ = 4' obtained from reference 4 about 10 percent above the  cal- 

culated 6d/61 value. 
6d/61 showed t h a t  t he  calculated value of Z2 (and thus the  value of Zl) w a s  
approximately 10 percent lower than the  experimental value. 
t he  6d/61 curve, using t h e  experimental values of Z2 instead of the  cal- 
culated values, brought t he  calculated 6d/61 values t o  within 3 percent of t h e  
experimental values. The difference between t h e  experimental and calculated Z2 
values i s  perhaps a consequence of three-dimensional e f fec ts .  
previously discussed discrepancy, t he  calculated boundary-layer-thickness change 
agrees within 5 percent of t h e  experimental values. 

AS the present empirical curves used i n  t h e  calculation of 6d/61 are  

based largely on the  data  of references 4, 6, and 7 it i s  not surprising t h a t  
t he  calculated curves of 6 6 correspond reasonably w e l l  with the  experimental 
curves. Demonstration of t h e  general appl icabi l i ty  of t h i s  empirical procedure 
f o r  calculating the  development of turbulent boundary layers  under impinging 
ref lect ing shocks, both within the  range explored and by extension t o  broader 
ranges of Reynolds number, Mach number, and shock strength, awaits the  acquisi- 
t i on  of new data. 

Figure 9 shows the  experimental value of 

A study of t h e  parameters used i n  t h e  calculation of 

Recalculation of 

Except f o r  t he  

dl  

CONCLUDING REMARKS 

I n  the l i g h t  of t he  present investigation of t h e  interact ion between an 
incident-reflecting oblique shock system and a two-dimensional, supersonic, 
turbulent boundary layer  the  following statements can be made r e l a t ive  t o  the  
changes i n  t he  boundary layer  between a point upstream where the  in te rac t ion  
starts and t he  downstream point where t h e  maximum pressure r i s e  occurs: 

1. With regard t o  the  ana ly t ica l  procedure f o r  calculating the  change i n  
the  prof i le  index: 

(a )  The profile-index-change calculation requires no empirical informa- 
t i on  o r  knowledge of t h e  boundary-layer-thickness change. 

(b)  Values of N change calculated at  Mach number 3.0 and turning 
angle up t o  11' are  found t o  agree with da ta  t o  within 10 percent o r  bet ter .  

2. With regard t o  t h e  empirical procedure f o r  correlat ing data of boundary- 
layer-thickness change: 

10 



(a )  The boundary-layer-shock model assumed i s  of a type consistent- 
with the  boundary-layer development and shock configuration revealed by 
shadowgraph and schlieren observatians o f  t h e  actual  phenomena. 

(b )  Data i n  t h e  Mach number range 2.9 t o  3.85, Reynolds number range 
(%) of 1.7 x 105 t o  5.82 x 105, and f o r  turning angles through the  free- 
stream incident shock up t o  13' are  correlated t o  within 5 percent. 

( e )  The next s teps  w i l l  be preparation of a format designed f o r  ready 
u t i l i t y  and, as data become available, exploration of t he  range of 
appl icabi l i ty .  

11 



EMPIRICAL CORRELATION OF Zl AND D?3I'ER4INA!TION OF Si/61 

A t  present the value of % i s  most eas i ly  obtained from the empirical curve 
of Z1/Z2 as a function of Ap/ql,l i n  f igure 10 and the empirical re la t ion  
f o r  Z2 ( r a t i o  t o  61 of the distance from the  inviscid intersect ion of the 
incident shock with the w a l l  t o  the  mst upstream point a t  which the pressure r i s e  
i s  detectable),  

The exponent d i s  given by the  expression 

i s  given i n  f igure 11. 
cMl ,1 

The empirically determined Mach number functiorl 

The qual i ty  of correlation of Z2 (calculated) versus Z2 (from the experimental 
data) can be seen i n  figure 12. 
(wedge or  ref lected shock) used i n  f igure 12 are  presented i n  tab le  I. These data 
a re  from references 4, 6, 7, 8, and 10 t o  14. 

layer-shock models ( f igs .  4 and 5 )  a re  presented i n  the  following tab le :  

The range of the data and the types of data 

The shock-wave angles and the  corresponding turning angles of the  boundary- 

Turning angle 

aa 
% + 2O 

ab + 2O 

a2 + 2O 
%I 

=2 
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The evaluation of 6:/61, obtained from the  values of t he  shock-wave angles 

The 
and the  corresponding turning angles of the boundary-layer-shock models along with 
the calculated value of 
three cases and the corresponding equation of 6:/tj1 f o r  each are: 

Z l ,  depends on which of three cases i s  applicable. 

Case 1: For Z 2  2 Z1 and (Z161) < (where Z1 and Z 2  are indicated 

i n  f i g .  4(b)),  Z 2 / f j l  i s  given by 

and 21/61 i s  given by 

(10) 

When 22, 

sion for  6;/tj1 i s  used: 

Z1, and Zl”) s a t i s f y  the conditions of Case 1 the following expres- ( 

Case 2: For Z 2  < Z1 and ( ~ ~ 6 ~ )  5 % ( f ig .  4 ) ,  equations (9) and (10) 
are used f o r  2 ~ / 6 ~  and 2 . When Z 2 ,  Z1, and Z1El) s a t i s fy  the condi- ( 
t i o n s  of Case 2, the following equation f o r  6:/til i s  used: 

Case 3 :  For Z 2  < 2 1  and (Z1Fj1) > 6l (22 and 2 1  are indicated i n  

f ig .  5(b;i,  ihe roilowing equation fo r  s ~ / ’ s ,  i s  used: 



with 22/61 given by 

t a n  2' (13) 

1 

and Zl/Sl given by 
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